Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.

نویسندگان

  • Makoto Kusaba
  • Hisashi Ito
  • Ryouhei Morita
  • Shuichi Iida
  • Yutaka Sato
  • Masaru Fujimoto
  • Shinji Kawasaki
  • Ryouichi Tanaka
  • Hirohiko Hirochika
  • Minoru Nishimura
  • Ayumi Tanaka
چکیده

Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)-bound carotenoids was repressed in nyc1, in which most LHCII isoforms were selectively retained during senescence. Ultrastructural analysis of nyc1 chloroplasts revealed that large and thick grana were present even in the late stage of senescence, suggesting that degradation of LHCII is required for the proper degeneration of thylakoid membranes. Map-based cloning of NYC1 revealed that it encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The predicted structure of the NYC1 protein and the phenotype of the nyc1 mutant suggest the possibility that NYC1 is a chlorophyll b reductase. Although we were unable to detect the chlorophyll b reductase activity of NYC1, NOL (for NYC1-like), a protein closely related to NYC1 in rice, showed chlorophyll b reductase activity in vitro. We suggest that NYC1 and NOL encode chlorophyll b reductases with divergent functions. Our data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis.

During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified;...

متن کامل

A novel carotenoid derivative, lutein 3-acetate, accumulates in senescent leaves of rice.

The biosynthetic pathway of lutein, the most abundant carotenoid in leaves, has been extensively studied, while its degradation pathway during senescence is poorly understood. We found that a novel carotenoid derivative, lutein 3-acetate, accumulates in senescent leaves of rice (Oryza sativa L.). The change in contents of lutein and lutein 3-acetate suggests that lutein is converted to lutein 3...

متن کامل

Corrigendum: The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves

Chlorophyll (Chl) degradation occurs during leaf senescence, embryo degreening, bud breaking, and fruit ripening. The Chl catabolic pathway has been intensively studied and nearly all the enzymes involved are identified and characterized; however, the molecular regulatory mechanisms of this pathway are largely unknown. In this study, we performed yeast one-hybrid screening using a transcription...

متن کامل

A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.

Leaf senescence, a type of programmed cell death (PCD) characterized by chlorophyll degradation, is important to plant growth and crop productivity. It emerges that autophagy is involved in chloroplast degradation during leaf senescence. However, the molecular mechanism(s) involved in the process is not well understood. In this study, the genetic and physiological characteristics of the rice rl...

متن کامل

Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling

The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2007